Grain structure predictions for metallic additive manufacturing processes

Author:

Dreelan D,Ivankovic A,Browne D J

Abstract

Abstract Additive manufacturing has transformed the way we think about component fabrication. Generating a geometry in a layer-by-layer fashion presents many advantages over traditional subtractive methods, but also presents many challenges pertaining to the highly localised and energetic nature of the heat source. Since the material passes through multiple heating and cooling cycles throughout the build, some of which completely melt and erase the microstructure, a dynamic simulation is necessary to determine the grain structure that emerges. Grains are generally, but not exclusively, highly textured with columnar grains commonly spanning multiple layers. Fast, efficient and parallelised envelope cellular automata based models are used to simulate the nucleation and growth of the individual crystals that comprise the grain structure, with trade-offs being made between intra-grain detail and computational efficiency so that meso-scale simulations are possible. Simplified, but physically sound thermal models are used to predict the thermal conditions at the melt pool periphery, which are weakly coupled to the grain growth model. Dendrite tip kinetics models are used to determine alloy specific growth laws as a function of local undercooling. The effect of various processing parameters on as-solidified grain size, morphology and texture are investigated for aluminium alloys 3D printed by laser powder bed fusion.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3