Effect of inoculum size and glucose concentration for bacterial cellulose production by Lactobacillus acidophilus

Author:

Jeff Sumardee N S,Mohd-Hairul A R,Mortan S H

Abstract

Abstract Bacterial cellulose (BC) has gained interest as new industrial materials because of its unique properties compared to other cellulose sources. Intense researches have been done to study the production of BC and finding a new strain source to meet the requirement of high yield of production with a low economic cost. In this work, the potential of Lactobacillus acidophilus as a new source of bacterial cellulose was studied by observing the effects of inoculum size and glucose concentration on the production of BC using the one-factor-at-time method. L. acidophilus was cultured in HS medium for 14 days at various cultivation conditions according to the experimental set-up. The results obtained indicate that the glucose concentration in the medium and the inoculum size of the bacteria had a significant role in the BC production. The highest BC of 1.843 g/L was achieved at 1.5 w/v% glucose concentration and 0.856 g/L at 6 v/v% of inoculum size. Although the amount of BC produced was comparatively low than BC produced from other bacterial strains, these results demonstrated the potential of L. acidophilus as a new strain source for BC production. Further study on other cultivation parameters is essential for the optimization of BC production by this L. acidophilus strain.

Publisher

IOP Publishing

Subject

General Medicine

Reference18 articles.

1. Isolation of Cellulose Producing Bacteria from Wastes of Vinegar Fermentation;Andelib;Lect. Notes Eng. Comput. Sci.,2009

2. Production of microbial cellulose from the new bacterial strain isolated from temple wash waters;Raghunathan;Int. J. Curr. Microbiol. Appl. Sci.,2013

3. FTIR spectral and microarchitectural analysis of cellulose produced by lactococcus lactis under agitated condition;Umamaheswari;J. Pure Appl. Microbiol.,2017

4. Characterization and transcriptomic basis of biofilm formation by Lactobacillus plantarum;Sun;J26 isolated from traditional fermented dairy products Lw.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3