Author:
Tan L V,Thinh P V,Tham N T H,Sy D T
Abstract
Abstract
Adsorption using novel materials is a common and highly applicable process in remediation of hazardous dyes in wastewater. Herein, we attempted the synthesis of NiFe2O4 decorated-exfoliated graphite (EG@NiFe2O4), an inexpensive and environmental benign material, and analyzed the adsorption process of the as-synthesized adsorbent against Congo red dye. Kinetic of the adsorption was investigated using various models including first-pseudo kinetic, second-pseudo kinetic, Bangham model and Elovich model. Isotherm of the process was evaluated by Langmuir, Freundlich, Temkin and Dubinin − Radushkevich model. Lastly, thermodynamic parameters of the adsorption towards Congo red dye was calculated. Our findings indicated that kinetic and isotherm of the adsorption process of both adsorbents (EG@NiFe2O4 and NiFe2O4) could be well explained by the pseudo-second-order model (R2 > 0.99) and Langmuir isotherm (R2 =) respectively. In addition, kinetic parameters showed that EG@NiFe2O4 possesses greater adsorption capacity in comparison with NiFe2O4. Estimated thermodynamic parameters also indicated the spontaneous and endothermic adsorption (ΔG=) of the EG@NiFe2O4 composite against Congo red dye.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献