Effect of intercritical annealing of normalised Nb-Ti-V microalloyed plate steel on microstructural evolution

Author:

Kambilinya PI,Siyasiya CW,Banks KM,Mostert RJ

Abstract

Abstract A homogeneous microstructure is required for consistent mechanical properties in normalised Nb-Ti-V microalloyed plate steels. Frequently, as-hot rolled microalloyed plate steels have a banded microstructure that is persistent even after normalising heat treatment (NHT), and this leads to inconsistencies and some scatter in mechanical properties. Therefore, this work focused on the influence of single-cycle normalising heat treatment (SNHT), double-cycle normalising heat treatment (DNHT) followed by intercritical annealing normalising heat treatment (INHT) on the homogenisation and mitigation of a banded microstructure. The study was conducted on a 0.13C-Nb-Ti-V plate steel grade. The as-hot rolled microstructure was banded and had a 1.13 Anisotropy Index (AI) value. Results from the three thermal cycles revealed that the DNHT and INHT mitigated the pearlite microstructural banding and gave a more homogenized pearlite phase distribution throughout the microstructure, unlike the SNHT that retained the banding. The DNHT also exhibited the finest ferrite grain size, while the INHT exhibited the coarsest. From Vickers hardness measurements (153±5.8 HV, 157±3.6 HV and 166±4.5 HV), the UTS was approximately deduced as, 480, 490 and 530 MPa for the SNHT, DNHT and INHT respectively.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. Mechanism of Microstructural Banding in Hot Rolled Microalloyed Steels;Cai;Mater. Sci. Forum,2005

2. Standard Practice for Assessing the Degree of Banding or Orientation of Microstructures;Astm,2016

3. Evolution of Microstructural Banding during the Manufacturing Process of Dual Phase Steels;Caballero;Mater. Trans.,2006

4. Effect of Pearlite Banding on Mechanical Properties of Hot-rolled Steel Plates;Bor,2008

5. Effect of microstructural banding in steel;Grange,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3