Embodied Active Tactile Perception

Author:

He Liang,Maiolino Perla

Abstract

Abstract Tactile perception plays an important role in an agent safely interacting with the environment while acquiring information about it. Bio-inspired robotics opens up possibilities for a new paradigm leveraging the morphology of the body, which filters the tactile information in physical interactions and enables investigations of new designs for embodied active tactile perception. The subjects of morphology embodied active perception and motor embodied active perception is defined and discussed in this chapter. In the scope of morphology embodied active perception, sensor optimization and sensor adaptation are further defined to describe the change of sensor morphology in the design phase and the interacting phase, respectively. More specifically, the concept of online and offline sensor adjustment is presented. Sensor optimization is solely considered in the offline process for optimization and evolution design of the sensor structure and characteristics. Sensor adaptation and motor embodied active perception are considered in the online process to actively shape the sensing process with the morphology change of the sensors themselves and the action of the body where the sensors are placed, respectively. “Design as a whole” is proposed as an inverse problem to address the sensing tasks. The design of new tactile sensors should not focus on the sensor per se but should also include design parameters for sensor optimization, sensor adaptation, and motor actions.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Reference49 articles.

1. Frontiers of medical robotics: from concept to systems to clinical translation;Troccaz;Annual review of biomedical engineering,2019

2. Vision for mobile robot navigation: A survey;DeSouza;IEEE transactions on pattern analysis and machine intelligence,2002

3. Review article tactile sensing for mechatronics—a state of the art survey;Lee;Mechatronics,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3