Feature Selection using Random Forest Classifier for Predicting Prostate Cancer

Author:

Huljanah Mia,Rustam Zuherman,Utama Suarsih,Siswantining Titin

Abstract

Abstract Prostate cancer is cancer that attacks the prostate gland, usually affecting men over 50 years. Prostate cancer is a disease that develops slowly. Based on this, rapid and precise detection is needed so that the disease can be treated immediately. This study focuses on the application Feature Selection using the Random Forest Classifier to detect prostate cancer. The Random Forest Classifier is a method of classifying data by determining the decision tree. The use of more trees will affect the accuracy to be obtained for the better. The Random Forest Classifier can classify data that has incomplete attributes and can be used to handle large sample data. Selection of features is an important process because it can affect the accuracy of classification. This method increases accuracy by about 87%. Thus, the selection of features can improve accuracy in the detection of prostate cancer.

Publisher

IOP Publishing

Subject

General Medicine

Reference14 articles.

1. Rapid Next-Generation Sequencing Method for Predicting of Prostate Cancer Risks;Fofanov;The Journal of Molecular Diagnostics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3