Parameter Interval Estimation of Semiparametric Spline Truncated Regression Model for Longitudinal Data

Author:

Prawanti Dasty Dewi,Nyoman Budiantara I,Purnomo Jerry D.T.

Abstract

Abstract Regression analysis is one method in statistics that is used to determine the pattern of functional relationships between response variables with predictor variables. Semiparametric regression approach is a combination of parametric regression and nonparametric regression. The most popular estimator for nonparametric regression or semiparametric regression is spline truncated estimator. Spline is the estimation method that is most often used because it has excellent statistical interpretation and visual interpretation compared to other methods. Regression modelling using longitudinal data is often found in everyday life, where observations are carried out for each subject over a period of time. Interval estimation is often examined by nonparametric regression and semiparametric regression; this estimation aims to determine predictor variables that have a significant influence on the response variable. One indicator used in poverty analysis is the poverty line. Based on Indonesia’s macro poverty analysis calculations, in the period March 2016 to March 2017, the poverty line increased by 5.67 percent, with increases in urban and rural areas at 5.79 percent and 5.19 percent respectively. Modelling using semiparametric spline truncated regression for longitudinal data on data on the percentage of poor people in Indonesia produces the best model using W1 weighting and one point knot. Based on the results of the study with a significance level of 0.05, it was found that the percentage of poor people was influenced by the human development index (HDI) and the unemployment rate. This semiparametric regression model has a minimum GCV value of 1.677, MSE of 5.477 × 10−2 and R2 value of 98.67%.

Publisher

IOP Publishing

Subject

General Medicine

Reference16 articles.

1. Spline Estimator in Birespon Nonparametric Regression for Longitudinal Data;Fernandes,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3