Author:
Salmi Nafizatus,Rustam Zuherman
Abstract
Abstract
Cancer has been known as a disease consisting of several different types. Cancer is a life threatening disease in the world today. There are so many types of cancer in the world, one of which is colon cancer. Colon cancer is one of the number one killers in the world. However, because there isn’t any obvious symptom of colon cancer at an early stage, people do not realize that they suffer from it. Even though cancer formation is different for each type of cancer, it is still a big challenge to make cancer classification with good accuracy. Many machine learning has been applied to the data of human’s genes in order to get the most relevant genes in the classification of cancer. The author proposes the Naïve Bayes Classifier model as a classification method to show that the model has good accuracy, good precision, good recall, good f
1 — score in classifying the data of patients suffering from colon cancer or not. In this proposed model, Naïve Bayes Classifier is a technique prediction based on simple probabilistic and on the application of the Bayes theorem (or Bayes rule) with a strong independence assumption. Therefore, this model is able to make higher classification accuracy with less complexity. In particular, it achieves up to 95.24% classification accuracy, thus this model can be an efficient analysis tool.
Reference19 articles.
1. Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015;Lancet,2015
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献