Forecasting Future Traffic Trend by Short-Term Continuous Observation

Author:

Mendi Vikas,Srinivasula Reddy I

Abstract

Abstract Annual Average Daily Traffic (AADT) is a key parameter to understand the traffic flow rates, traffic density and to design any highway. Generally, short period observed traffic data mainly depends on that season in which the traffic surveys were conducted, which may be high or low compared to the other seasons. So, the behavior of seasonal variation of traffic must be considered for the AADT analysis. These seasonal variations can be found out using the past recorded data of that selected location. But in the case of a location where the past annual traffic data is not available, an alternative method is required to calculate the seasonal variation of the traffic data. The present study deals with the analysis of seasonal variation factors to estimate the AADT from the fuel sale data collected from the nearby petrol stations at the traffic survey point. This work explains how Annual Average Daily Traffic (AADT) can be estimated from a week’s limited traffic data when there is a scarcity of automatic traffic data collecting systems.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3