Author:
Kali Naresh,Korla Srikanth
Abstract
Abstract
Fibre metal laminates (FMLs) afford the notable advances over ongoing composite materials for aerospace and automotive applications due to their low weight and outstanding mechanical properties. Nevertheless, FMLs are prone to damages during manufacturing and loading conditions. Double cantilever beam (DCB) and vibration test are the commonly used tools to assess fracture energy values and the level of damage influence on the material properties respectively. Therefore, this paper aims at correlating the numerical validation of mode I delamination with already published experimental data by Y.Pan et.al and study the influence of delamination under free vibration analysis of Magnesium (Mg AZ31) alloy based fibre metal laminates. For the presented model, the numerical values showed good acceptance with the experimental values of DCB test. It was also further observed that there is significant reduction in natural frequency due to delamination in the fibre metal laminates.