Author:
Hidayah N,Putri V D,Elma M,Mahmud ,Syauqiah I,Amenia A,Putra D G L,Akbar H R,Rahma A
Abstract
Abstract
Membranes adsorbent are successfully prepared derived from palm empty fruit bunches (PEFB) which pyrolyzed by furnace as physical activation. The PEFB membrane adsorbent was activated to develop porous structures and surface area which able to be applied for gas separation. The aims of this study are to fabricated the pyrolyzed PEFB-based membrane adsorbent with different loading of PEFB mass to identify the surface organic functional groups of the PEFB membrane adsorbent. Fabrication of this membrane adsorbent was conducted into three steps, i.e. (1) pre-treated PEFB materials; (2) pyrolyzed the PEFB adsorbent at 500°C; and (3) PEFB membrane adsorbent fabrication by mixed both of PVA and PEG polymers into PEFB adsorbent with varied mass (15-17.5 grams). The functionalization of this membrane adsorbents was analysed by Fourier Transform Infra-Red (FTIR) spectra. The result shows the three variations of the PEFB membrane adsorbents present the surface oxygen, functional group. The effect of PEFB mass loading to the carbon pores formation of PEFB membrane adsorbent was exhibited by the escalating of C-H and C-O groups. The membrane adsorbent by adding 17.5 grams of PEFB mass indicating the highest peak of hydroxyl C-O at wavenumber 1070 cm−1. It demonstrates that membrane adsorbent with high PEFB mass loading and physic activation by pyrolyzing is great to tailoring the membrane adsorbent structure properties which capable to be applied for gas separation, especially for biogas upgrading.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献