Performance Enhancement of Rotary Desiccant Wheel using Novel Homogenous Composite Desiccant Designs

Author:

Muthu Selvaraji,Sekarapandian N,Ashok K

Abstract

Abstract Rotary solid desiccant wheels are used as sensible and latent heat recovery wheels in the Desiccant-HVAC systems. The two major types of these wheels include enthalpy (total energy recovery) wheels which remove sensible heat and latent heat from process air and transfer them to regeneration air, and dehumidification wheels which transfer a significant amount of moisture (latent heat) at the same time minimizes heat transfer. In this work a set of novel design of hybrid rotary desiccant wheel constructed using a composite homogeneous mixture of solid desiccants (multiple types of silica gel and molecular sieves) are proposed. The transport phenomena taking place in the proposed set of novel design of hybrid rotary desiccant wheel are simulated numerically using an in house finite volume method based CFD code. The performances of these wheels are compared with conventional type of wheels made of molecular sieves and silica gel, respectively. The results show that the performance of these hybrid wheels are enhanced by up to 40 % by using these novel composite wheel designs.

Publisher

IOP Publishing

Subject

General Medicine

Reference14 articles.

1. A Mathematical Model of Predicting the Performance of Compound Desiccant Wheel (A model of compound Desiccant Wheel);Ge;Applied Thermal Engineering,2010

2. Comparative study of different desiccant wheel designs;Narayanan,2011

3. Effect of Regeneration Section Angle on the Performance of a Rotary Desiccant Wheel;Muthu;ASME. J. Thermal Sci. Eng. Appl.,2016

4. Experimental analysis on the dehumidification and thermal performance of a desiccant wheel;Angrisani;Appl. Energy,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3