A chemical reaction model in a porous medium

Author:

Kuzmina L I,Osipov Yu V

Abstract

Abstract Chemical reactions in a porous medium are found in many natural phenomena and technological processes. Reactive substances dissolved in groundwater can significantly change the soil strength. The precipitate formed as a result of the reaction changes the porous medium structure and affects the porosity and permeability. A one-dimensional model of the reaction of two reagents in a homogeneous porous medium with a linear reaction function is considered. The model includes the mass balance equations of each reagent and precipitate, and the kinetic equation of precipitate growth. It is assumed that the precipitate is stationary and the growth rate of the precipitate is proportional to the reagents’ concentration. A carrier fluid with constant concentration reagents is injected at the empty porous medium entrance. The reaction front moves in a porous medium at a constant speed. The exact solution to the problem is constructed by eliminating the unknown functions and lowering the equations’ order. A Riemann invariant that relates the concentration of sediment and reagents to the system’s characteristics was found. The reaction’s numerical simulation is performed. It is shown that, for a long time, the reagents’ concentrations and the precipitate tend to final limit values. Sediment profiles always decrease monotonously, and the type of the profiles’ convexity changes.

Publisher

IOP Publishing

Subject

General Medicine

Reference22 articles.

1. Produced water re-injection with seawater treated by sulphate reduction plant: injectivity decline, analytical model;Bedrikovetsky;Journal of Petroleum Science and Engineering,2009

2. Flow of suspensions through porous media - application to deep filtration;Herzig;Industrial and Engineering Chemistry,1970

3. Correction of basic equations for deep bed filtration with dispersion;Bedrikovetsky;Journal of Petroleum Science and Engineering,2006

4. Incomplete mixing and reactions in laminar shear flow;Paster;Physical Review E,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3