Functional safety and reliability for innovative vehicle braking system and integration with electric traction units

Author:

Favilli T.,Delogu M.,Pugi L.,Berzi L.

Abstract

Abstract Newly electric vehicle architectures require intensive virtual and physical testing for safety assessment, due to the increasing relevance of By-Wire systems and the presence of innovative control algorithms for ordinary driving scenario, potential emergency situations or Advanced Driver-Assistance Systems implementation purpose. To reduce the development time while increasing system reliability and the a priori knowledge about its safety requirements, the evaluation of such aspects should be performed. In accordance to ISO26262 standard, authors propose a systematic approach based on Virtual FMEA, in order to assess the functional safety level of hybrid brake plant. Plant modification and securing strategy as been presented and implemented in target vehicle model, evaluating their performances in simulation environments, in order to met required Automotive Safety Integrity Level. This work is developed in the ambit of OBELICS European Project.

Publisher

IOP Publishing

Subject

General Medicine

Reference31 articles.

1. Model-based Engineering Workflow for Automotive Safety Concepts

2. International Electrotechnical Commission IEC,2018

3. Fault tolerant steer-by-wire systems: An overview;Huang;Annual Reviews in Control,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3