Numerical Investigation of Flow Behaviour and Erosion Potential in the Side-Wall Clearance Between Guide Vane and Runner

Author:

Pandey A,Gautam S,Chitrakar S,Acharya N,Bijukchhe P L

Abstract

Abstract In the hydropower plants exposed to excessive sediment concentration, the components of Francis turbines, especially the regions of Guide Vanes (GVs) and Runner Vanes (RVs) are severely eroded. The side-wall clearance between GV and runner is present in these turbines to separate the rotating and stationary components. The height difference between the runner inlet and GV outlet covers, introduced during the fabrication or assembly process might play a crucial role in accelerating the erosion process in these components. This study is focused on numerical analysis of simplified geometries that replicate different scenarios of the height difference and consequent flow behaviour in the side-wall clearance of Francis turbines. The numerical analysis is done in OpenFOAM using the available solver adopting the finite volume method (FVM). The numerical study is compared with the experimental results obtained from Rotating Disc Apparatus (RDA). The numerical analysis shows the vortex formation in the side-wall clearance region which traps the sediment particles. Such vortex formation causes erosion in the region. The vortex formation and flow behaviour in different height difference scenarios vary with each other and so does the erosion pattern in the experimental results.

Publisher

IOP Publishing

Subject

General Medicine

Reference14 articles.

1. A review on silt erosion in hydro turbines;Padhy;Renew. Sustain. Energy Rev.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3