Sustainable Material: Development Experiment of Bamboo Composite Through Biologically Binding Mechanism

Author:

Ridzqo I F,Susanto D,Panjaitan T H,Putra N

Abstract

Abstract Bamboo as stems have been widely manufactured for composite. However, fiber as the smallest constituent component of bamboo stems supporting the strength and flexibility of the plant has not been widely employed as raw material. These strong and flexible properties, coupled with easy planting treatment and fast harvesting, apparently make bamboo highly potential developed as sustainable raw material for composite. Unfortunately, the current manufacturing process of bamboo for composite by using chemical substances would have ended bamboo up as no longer environmentally friendly. By utilizing lignocellulose content within its fiber, this research studied fabrication of a novel composite boards from bamboo fibers through biologically binding mechanism by using fungal mycelium. Gigantochloa apus bamboo stems are extracted into three types: long fibers, short fibers, and powder. Then, the bamboo fibers are added with water and some additional nutritions then sterilized together. These substrates are then inoculated with mycelium seed of Ganoderma lucidum. The fibers bound together along with the growth of mycelium. The result shows that this board is potential to be used for interior purpose in building especially high rise building with high need of light-weight insulation and partition board and expected to replace the need for building components that have been made from unsustainable raw materials and methods.

Publisher

IOP Publishing

Subject

General Medicine

Reference23 articles.

1. Bamboo properties and suitability as a replacement for wood;Anokye;Pertanika J. of Scholarly Research Reviews,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3