Investigation of machining parameters on corner accuracies for slant type taper triangle shaped profiles using WEDM on Hastelloy X

Author:

Manoj I V,Joy R,Narendranath S,Nedelcu D

Abstract

Abstract Wire electro-discharge machining (WEDM) is a widely used machining process for machining of difficult to cut materials, which are used in precision profile applications like dies, metal stampings, and gas turbine parts. In the present research work, a new slant type taper fixture was used to obtain angular machining of triangular shape slots of sides 1mm, 3mm and 5mm machined both in 0° and 30° as slant angles on Hastelloy X. The corner radius and corner errors were investigated for different machining parameters like corner dwell time (CDT), offset distance (WO), wire guide distance (WGD) and cutting speed override (CSO) using L16 orthogonal array for both the slant angles. SEM micrographs indicated that corners were with lower radii at 30° than in 0° slant profiles, at lowest and highest cutting speeds. The main effects plot showed that the corner radius increases with the increase in wire offset and wire guide distance parameters. The increase in corner dwell time has an adverse effect on the corner radius. The triangles were machined at different cutting speeds from 0.47 to 1.51 mm/min with various parameters; it was observed that as the corner radius decreases the corner error also reduces. However, the corner radius and corner error can be minimized by selecting an optimized cutting parameter.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. Dispersion strengthened super alloys by mechanical alloying;Benjamin;Metall. Trans.,1970

2. Machinability of nickel-base super alloys: a general review;Choudhury;J. Mater. Process. Tech.,1998

3. The machinability of nickel-based alloys: a review;Ezugwu;J. Mater. Process. Tech.,1999

4. Improvement of surface integrity of Nimonic C 263 super alloy produced by WEDM through various postprocessing techniques;Mandal;Int. J. Adv. Manuf. Technol.,2017

5. A novel method of determination of wire lag for enhanced profile accuracy in WEDM;Sarkar;Precision Engineering,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3