Strain sensing capabilities of Ag-sandwiched ITO as transparent thin film resistor

Author:

Bhat Shreyas P,Bharathi S H,Nayak M M

Abstract

Abstract Strain sensors with good sensitivity and high optical transparency are of notable use in smart and transparent electronics which demands opto-electromechanical application. In this work, strain sensing capabilities of thin film resistor with high optical transparency is evaluated. Transparent Thin Film Resistor (TFR) was prepared by sputtering trilayer of Indium Tin Oxide (ITO) and Silver (Ag) on flexible polyethylene terephthalete (PET) substrate. ITO thin film was optimized to achieve resistivity of ∼5.5 × 10−4 Ω.cm with ∼91% optical transmission in visible wavelength. Insertion of thin silver film (∼10 nm) between ITO films by sputtering at room temperature produced film resistivity ∼6 × 10−5 Ω.cm and resistance ∼4 K.Ω to serve as strain sensing layer. Longitudinal piezoresistive response was evaluated by cantilever beam bending method. Gauge factor of 3.5 ±0.3 and optical transmission of ∼87% in 400-800 nm wavelengths (visible region) was measured on the transparent TFR. Piezoresistive response was linear and reproducible with minimal hysteresis for strains up to 280 μƐ for the measurements carried out at ambient conditions.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3