Modeling of a solar thermal system as a power supply alternative for a resistor water distillation system using TRNSYS

Author:

Tarazona-Romero B. E.,Ascanio-Villabona J. G.,Quintero-Ruiz A. D.,Sandoval-Rodriguez C. L.,Duran-Sarmiento M. D.

Abstract

Abstract The sizing of a solar thermal system to feed the water distillers in the laboratory of the Santander Technological Units is presented, proposing a comparative study between three calculation methods (f-chart, instantaneous and ACSOL) for the estimation of the surface of solar capture, finally supported by modeling in the TRNSYS software of the final system, to evaluate its behavior dynamically during one year. Initially, a search for information is carried out to establish the models to develop each of the calculation methods, additionally technical data is collected from the laboratory equipment to determine the consumption of hot water. Subsequently, each of the calculation methods is applied in order to size the catchment surface, to finally carry out a comparative study between the results obtained, determining which is the most appropriate method for the calculation and defining the dimensions of the same, to develop a modeling of the dynamic behavior of the system through the TRNSYS Software. The final result presents a storage system with an average temperature of 62.13 ° C and solar collectors with an average temperature of 58.7 ° C for one year of operation. Finally, the operating time of the resistive stills is reduced from 11 hours a day to 6 hours with the integration of the Thermosolar system.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3