Radio-shielding metamaterials transparent in the visible spectrum: approaches to creation

Author:

Osipkov A,Makeev M,Garsiya E,Filyaev A,Sinyagaeva K,Kirillov D,Ryzhenko D,Yurkov G

Abstract

Abstract The approaches to creation of the materials providing simultaneously high indicators of transparency in the visible spectrum and shielding in a wide radio frequency band are considered in this paper. The analysis and comparison of the main designs of such materials, as well as approaches to their creation, including multilayer and conductive mesh structures, is carried out. The results of our own theoretical studies of the disordered mesh structure are presented, which allow one to obtain a light transmission coefficient from 90 to 98 % in combination with an electromagnetic interference shielding efficiency from 50 to 65 dB. The best results practically achieved to date (shielding efficiency equal 45 dB in the range from 10 kHz to 20 GHz with a light transparency of more than 80 %) were obtained on mesh structures by photolithography, which is a significant limiting factor of this approach. The created multilayer structures show, in general, lower characteristics. However, the technology for their production is better scaled, and the optimization of the thicknesses and chemical composition of multilayer structures can significantly increase them. In this regard, technological aspects may come to the fore when taking into account the possibility of subsequent scaling of the technology and economic indicators when choosing an approach for the implementation of the materials with the required characteristics.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3