Author:
Sharapov Serhii,Chekh Oleh,Husiev Danylo,Klymenko Volodymyr,Shaparenko Oleksiy
Abstract
Abstract
The article contains the possibility of increasing boiling fluid flowing efficiency from expanding channels. This process takes place in the motive flow nozzle of a liquid-vapor ejector, working on the principle of thermal stream compression. Efficiency increasing by profiling the diffuser part of the nozzle. Modern industry uses nozzles, which are like de Laval nozzles, with straight walls of the diffusers. The authors suggest paying closer attention to profiling these nozzles, which might increase their efficiency and improve their gas-dynamic characteristics. For comparison, we choose a channel of a traditional form (with straight walls of the diffuser) and a channel of parabolic shape. The article contains a mathematical model to calculate the process of flowing the boiling fluid from the authors-designed channels – the peculiarities of this model that appear after changing the geometry of its streaming part. We obtain comparative analysis calculation results based on the mathematical model and the Ansys CFX workflow model. As a result of numerical calculation using the authors mathematical model and modelling in the Ansys CFX software package, it concludes that the parabolic shape of the diffuser is the most favourable. In the boiling process, the liquid central core is boiling at the optimum distance from the nozzle throat, and the flow of a stable vapor structure with the required pressure value for each regime forming at the outlet.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献