Bi-Directional System Coupling for Conjugate Heat Transfer and Variable Leakage Gap CFD Analysis of Twin-Screw Compressors

Author:

Rane S,Kovačević A,Stošić N,Smith I K

Abstract

Abstract Oil-free twin-screw compressors are essential in various industrial applications where clean compressed gas is required. Due to the absence of the cooling oil in these machines, thermal deformations are large. Hence, design clearances are generally set at a relatively large value of more than 150 μm. Leakage through these clearances are the primary source of flow loss. It is essential to predict the change of the gap size in operation accurately so that the design clearances can be minimised, allowing reliable operation and maximising compressor efficiency. To achieve this, CFD and Structural solvers were combined. The CFD model uses a single domain deforming grid of the twin-screw rotors generated in SCORG grid generator, together with ANSYS CFX flow solver. The thermal model of the rotors and housing uses ANSYS Structural solver. Two modelling systems were coupled bi-directionally to obtain variation in the radial leakage gap size for calculation of performance in the CFD model. The predicted compressor performance thus obtained was compared with measurements of flow, internal pressure-rise, power, specific power, volumetric and adiabatic efficiency. For the test case, three variations of radial gap size were evaluated, two of them with the uniform gap size of 10 μm and 160 μm and the third one with a variable gap size as predicted by the bi-directionally coupled model. The coupled model predicted this gap size to vary from 24 to 117 μm, thus predicting an improved flow and volumetric efficiency by 8.2%, lower indicated power by 2.5% and a higher adiabatic efficiency by 5.5%, in comparison to the design gap size of 160 μm. These predicted gap sizes could be used to improve the design clearances of the compressor by reducing them from 160 to 120 μm which would result in a better performance during operation.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3