Thermal Optimization of Functional Insertion Components (FIC) for Cryogenic Applications

Author:

Shu Q S,Demko J A,Fesmire J E

Abstract

Abstract Various functional insertion components (FIC), directly connecting a cold mass and the ambient environment, are irreplaceable and play crucial technical roles in many superconducting cryogenic applications. However, such components also bring a huge heat leak to the cold mass. The heat leak is usually much greater than that through entire evacuated MLI insulation system and solid support structures combined. Therefore, this situation brings unimaginable challenges not only to the refrigeration loads to be met but also critical aspects of the FIC design in satisfaction of highly restrictive, even contradicting technical functions. The FIC must simultaneously minimize the heat leak provide a large amounts of DC current and RF power to/from the cold mass, as well as provide a reliable ultrahigh vacuum thermal isolation break with strong mechanical stability. Reviewed are the following commonly used FICs: 1) various RF input couplers for transmitting MW-RF power; 2) high DC power current leads for energizing various SC magnets; 3) various high order mode (HOM) couplers for damping unwanted RF energy; 4) instrumentation cable/wire to cold mass. Approaches to efficiently minimize the DC current heating, RF surface heating, heat leak through the solid body of FIC, efficient cooling approaches, while reliably providing the technical functions, are briefly summarized and compared for select applications from around the world.

Publisher

IOP Publishing

Subject

General Medicine

Reference26 articles.

1. Large applications & challenges of state-of-the-art superconducting RF (SRF) technologies;Shu;Advances in Cryogenic Engineering,1998

2. The European Spallation Source Design;Garoby;Phys. Scr.,2018

3. Qualification of fin-type heat exchangers for the ITER current leads;Ballarino,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3