Multi-response optimization design based on Non- parametric error-corrected method

Author:

Tingyu GAO

Abstract

Abstract The construction of a response surface model is critical to the experimental results. Traditional model construction method is parametric method. The parametric estimates may be highly biased, and the optimal control factor settings can be miscalculated if the models are not correctly specified. To solve these problems, this paper proposes a new multi-response optimization design method, Non-parametric error-corrected method. The nonparametric method provides a very useful alternative when researchers don’t have any information about the form of underlying functions. Finally, the hybrid genetic algorithm is used to achieve global optimization aiming at the expected quality loss function the validity of the method was verified by the experimental data of the femtosecond laser micro/nano-machining.

Publisher

IOP Publishing

Subject

General Medicine

Reference13 articles.

1. A robust desirability function method for multi-response surface optimization considering model uncertainty;He;European Journal of Operational Research,2012

2. Bayesian modeling and optimization of multi-response robust parameter design;Jianjun;Journal of Management Sciences in China,2016

3. Bayesian modeling and optimization for multi-response surfaces;Wang;Computers & Industrial Engineering,2020

4. A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability;Wang;European Journal of Operational Research,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3