Investigations on Impact of YSZ Nanoparticles on Morphology & Electrical conductivity of PEDOT: PSS

Author:

Vijaykumar C J,Bulla S S,Chavan C K,Bajantri R F

Abstract

Abstract Conductive polymer nanocomposites, which combine the flexibility and conductivity of polymers with the unique properties of nanofillers, have generated interest in various fields such as energy storage, sensors, coatings, and corrosion protection. This study discusses the effect of Yttria-stabilized zirconium nanoparticles (YSZ NPs) on the morphology and electrical conductivity of poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT: PSS). Thin films of PEDOT: PSS and PEDOT: PSS: YSZ were fabricated using spin coating technique. FTIR and XRD characterizations confirmed the interaction between YSZ nanoparticles and the PEDOT: PSS matrix, leading to changes in chemical morphology and film crystallinity. The investigation of the current-voltage (I-V) relationship showed improved electrical conductivity in PEDOT: PSS films with the addition of YSZ nanoparticles, with respective conductivities of 0.028×10−6 S cm−1 and 0.0885×10−4 S cm−1 for pristine and YSZ-containing films. Additionally, the sensing properties of the PEDOT: PSS: YSZ film in detecting organic vapours were studied. These findings suggest that these conducting polymer nanocomposite thin films could potentially be used as electrolyte components in battery cells, supercapacitors, and fuel cells, as well as serve as sensors for certain organic vapours.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3