The Effects of Sintering Schedule on Alloy Powder ASC 100.29 Compacts Formed at Elevated Temperature

Author:

Hasan Z,Ismail M A,Rahman M M

Abstract

Abstract This paper presents the outcomes of an experimental investigations on the effect of sintering schedule i.e. holding time and temperature to the final properties of alloy powder ASC 100.29 formed through uniaxial die compaction process at elevated temperature. A lab-scale powder compaction rig with uniaxial compression and installation of heater was designed and fabricated in order to produce green compact from powder mass at elevated temperature. Alloy powder ASC 100.29 (99.7 wt%) and lubricant, zinc stearate (0.3 wt%) were mixed mechanically for 30 min at a rotation of 30 rpm. The powder mass was compacted at 150°C via simultaneous upward and downward uniaxial compression load of 425 MPa. Defect-free green compacts were generated from the compaction and were subsequently sintered at 1000°C using a custom argon gas fired furnace at three different sintering rates, i.e., 5, 10 and 15°C/min for three holding times, i.e., 30, 60 and 90 min, respectively. The final products were characterized through their physical, electrical and mechanical properties and their microstructures evaluated. The results revealed that the sample sintered for a longer period of time, i.e. 90 minutes at the slowest sintering rate, i.e. 5°C/min obtained the better final characteristics.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3