Application of artificial neural networks to fault diagnostics of rotor-bearing systems

Author:

Kornaev N,Kornaeva E,Savin L

Abstract

Abstract The article is dedicated to the pattern recognition of unbalanced rotor vibration trajectories. The diagnostics of rotary machines with fluid-film bearings is studied. The feed forward neural networks were used to analyze the measurement data of rotor vibrations and other parameters of the rotor-bearing system. The states of the system were studied at various values of the rotor unbalance. It was shown that the number of training samples and the number of neurons in the input layer have the greatest impact on recognition accuracy. As a result of training the neural network to recognize 3 classes of defects, an accuracy of more than 97% was achieved.

Publisher

IOP Publishing

Subject

General Medicine

Reference20 articles.

1. Fault detection analysis in rolling element bearing A review;Gupta;Mater. Today Proceedings,2017

2. FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors;Cabal-Yepez;Mech. Systems and Sig. Proc.,2012

3. A new bearing fault diagnosis method based onmodified convolutional neural networks;Zhang;Chinese Journal of Aeronautics,2020

4. Application of artificial neural networks to diagnostics of fluid-film bearing lubrication;Kornaeva;IOP Conf. Series: Materials Science and Engineering,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3