Analysis of Criminal Spatial Events in GIS for predicting hotspots

Author:

F. Mohammed Abbas,R. Baiee Wadhah

Abstract

Abstract The crime rate increasing in developing countries cause of the unequal distribution of psychological, economic situation. This research aims to identify the crime mapping and investigate the hotspots and analyzing the spatial crime dataset and the predict of Spatio-temporal hotspot in Baltimore city for a period from 2012 to 2018. Analyzing crime data using data mining algorithms and The Geographic Information System (GIS) of Geographic dataset visualize and it possible for law enforcement to detect spatial crime patterns map easy and flexible and different analysis to identify the crime hotspot region efficiently. analysis crime hotspot using GIS is a useful way to the recognition for crime pattern and predicting hotspot over spatial correlation, analysis spatial data and revile crime pattern future detection. using spatial correlation, the G* statistic has been done with hotspot analysis the Getis-Ord Gi* to find the result of the spatial statistics pattern. analysis the crime to predict hotspot uses spatial variation and density crimes for clarifying the positions of statistically significant crime predict hotspots and cold spots and GIS interpolation method is used for more efficient visualization. This research using Grid network hotspots are applied to the crime data of Baltimore, Maryland state to recognize the hotspots for crime data like Shooting, Homicide and Assault by threat.

Publisher

IOP Publishing

Subject

General Medicine

Reference13 articles.

1. Crime mapping and analysis using GIS;Johnson,2000

2. IST: Role of GIS in crime mapping and analysis;Sheikh,2017

3. Analysis on spatial-temporal features of taxis’ emissions from big data informed travel patterns: a case of Shanghai, China;Luo;Journal of cleaner production,2017

4. A geo-statistical approach for crime hot spot prediction;Das;International Journal of Criminology and Sociological Theory,2016

5. The spatial-temporal pattern of policing following a drug policy reform: triangulating self-reported arrests with official crime statistics;Gaines;Substance use & misuse,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3