Influence of vertical step on forces and dimensional accuracy of SPIF parts – a numerical investigation

Author:

Popp M O,Rusu G P,Oleksik V,Biris C

Abstract

Abstract Single point incremental forming (SPIF) is a new flexible sheet metal forming process characterized by low costs and the possibility to produce prototype parts without the need for a specific die. This is one of the reasons why this process is nowadays used for manufacturing of highly customized small series parts. The process involves the usage of a hemispherical punch which gradually deforms the sheet metal blank fixed by two simple clamping rings, by following a path until the final shape of the product is obtained. The aim of this paper is to investigate and analyze the influence of the vertical step over forces involved in the process and obtained geometrical accuracy, which is one of the main drawbacks for large scale implementation of the process. A numerical analysis was carried out through finite element method with different step size for frustrum pyramid shaped parts made from the same material. In this way, the most appropriate vertical step can be chosen for further experimental research in order to obtain the most accurate parts and with as little stress as possible on the equipment involved in the process.

Publisher

IOP Publishing

Subject

General Medicine

Reference17 articles.

1. Processing strategies for single point incremental forming – a CAM approach;Tera;Int. J. Adv. Manuf. Technol.,2019

2. Using the Analytic Hierarchy Process (AHP) and fuzzy logic to evaluate the possibility of introducing single point incremental forming on industrial scale;Bologa;Procedia Computer Science,2018

3. Selecting between CNC milling, robot milling and DMLS processes using a combined AHP and fuzzy approach;Breaz;Procedia Computer Science,2017

4. A Dynamic Model for KUKA KR6 in SPIF;Crenganis;Processes Material Science Forum,2019

5. A Brief Review of Robotic Machining;Bârsan;Acta Universitatis Cibiniensis,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3