Abstract
Abstract
The brief review on recent approaches on the formation of a new class of subwavelength scale localized structured surface plasmon polaritons (SPP) beams is discussed. For the Janus-like particle (including the geometrically symmetric particles with different dielectrics) the morphology of the field localization area and its properties depends on the particle shape and material. Plasmonic hook (PH) beam does not propagate along straight line but instead follow curved self-bending trajectory. Wavefront analysis behind of such symmetric and asymmetric mesoscale rectangle structure reveals that the unequal phase of the transmitted plane wave results in the irregularly concave deformation of the wavefront inside the dielectric which later leads to creation of the PH. Such dielectric structures placed on metal film enable the realization of new ultracompact wavelength-selective and wavelength-scaled in-plane nanophotonic components. SPP have potential to overcome the constrains on the speed of modern digital integrated devices limitation due to the metallic interconnects and increase the operating speed of future digital circuits.