Oxygen vacancy related conduction behavior in BaZr0.05Ti0.95O3 ceramic

Author:

Nag Bhargavi G.,Badapanda Tanmaya,Khare Ayush,Shahid Anwar M.,Brahme Nameeta

Abstract

Abstract For this study, the microcrystalline powder of BaZr0.05Ti0.95O3 (BZT) was prepared by the conventional solid state reaction method. The sample was calcined at 1200 °C for 4 hours and sintered at 1300 °C. The calcined powder was structurally characterized by X-ray diffraction (XRD), which showed that the specimen has a Perovskite structure having orthorhombic structure. On analyzing the scanning electron microscope (SEM) the calculated crystal size was observed to range between 20-30 μm. The dielectric study of BZT showed normal phase transition behavior. The conductivity studies as a function of temperature and frequency has been performed to study the role of oxygen vacancies. The results of the frequency dependence of the conductivity suggest that oxygen vacancy hopping processes, due to relaxations in oxygen vacancy-related dipoles, being mainly responsible for the conduction behavior in the studied system.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3