Characterization of drying behavior and modeling of industrial drying process

Author:

Vasić M,Radojević Z

Abstract

Abstract The general method for industrial chamber dryer optimization was reported in this paper. The first step in finding the most suitable drying regime is to characterized the clay raw material, especially its water loss at 2000C and to determine the critical drying rate inside the specially constructed laboratory dryer. These data provides us information if the product or the dryer is the bottleneck for the optimisation. If the optimization is justified geometry of the dryer, air mass flows, temperature, and humidity profiles inside the dryer as well as initial water content in the drying material, initial temperature of the products and the load of the dryer are required. Some of the previously mentioned data are only used to check if the chamber dryer is working properly, while the others are used as the initial parameters necessary for software simulation. In this paper two models for calculating the optimal drying parameters were used. The first model was developed from the comprehensive theory of the moisture migration during isothermal drying. The calculation software for setting up the non - isothermal drying regimes was reported in our previous papers. It is important to say that this model was not able to adequately predict the temperature raise within the drying products. In order to simulate the raise of the temperature of the roofing tiles during drying the second model was used. This simple receding drying front model was firstly reported by Kitcher. If both models are used simultaneously it is possible to calculate air temperatures, product temperature, absolute and relative humidity of the drying air, moisture content of the product, drying rate etc… It is important to mention that this approach can lead to the recommendations for changes inside the dryer before an optimized situation is achieved. One example of such situations is described in this paper in details.

Publisher

IOP Publishing

Subject

General Medicine

Reference13 articles.

1. Performance optimization of a brick dryer using porous simulation approach;Shokouhmand;Drying Technology,2011

2. Industrial ceramic brick drying in oven by CFD;Araujo;Materials,2019

3. Improvement of the drying process control in a clay product plant;Dolanc;IAF Proceeding,1997

4. Analysis and optimization of drying of green brick in a tunnel dryer;Mancuhan;Drying Technology,2009

5. Moisture diffusion coefficients for modeling the first and second drying section of green bricks;Telljohann;Drying Technology,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification Algorithm of the Industrial Dryers Based on Subspace;2024 3rd Conference on Fully Actuated System Theory and Applications (FASTA);2024-05-10

2. Novel method suitable for decreasing the roofing tile failures generated during rapid drying;IOP Conference Series: Materials Science and Engineering;2021-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3