Demountable Rod Structures with Flexible Connections Ensuring the Reliability and Safety of Construction Objects

Author:

Shmelev Gennady,Pugacheva Natalya,Khaidarov Lenar,Antonov Anatoly,Gimazetdinov Aivaz,Sibgatullin Marat,Galimullin Ilshat,Badrutdinov Marat,Farah Reda

Abstract

Abstract Individual walls of structures based on wedge-type scaffolding can be different in height and are often used as enclosing structures for different cultural and sporting events. Usually, such structures are covered in the longitudinal direction with an awning cloth on both sides, which is why they take on the full wind load from the entire area of the awning. When calculating such structures, the wind load is the determining load. In practice, these structures are built according to the recommendations of the manufacturer’s catalog of scaffolding, and they are repeatedly statically indeterminate systems with a large number of unloaded elements. This increases the material consumption of the structure and increases the cost of transport and installation work. In structures made of modular scaffolding, diagonal elements are used to give spatial rigidity to the structure, to reduce the calculated length of vertical elements, and to perceive the shift movements of the cell caused by uneven vertical movements of adjacent posts and horizontal loads. A structure with a full set of diagonal elements has a large number of weakly loaded elements. In this regard, it is possible to perform the so-called «discharged» construction scheme for more efficient use, replacing rigid diagonal elements with cable ties and reducing the number of diagonal elements in the longitudinal direction. The main task of the work is to analyze the stress-strain states of both the original system with rigid diagonal elements and systems obtained by partially replacing standard diagonals with flexible connections in the form of pre-stressed and non-pre-stressed cable ties. In order to study the actual operation of elements of rod collapsible structures and improve their design solutions, an experimental study of a fragment of the Layher system with cable ties was performed. Based on the experiment, it was determined that the actual movements when using flexible connections differ significantly from the calculated ones. The reason for the discrepancy is the deformation of the elements in the attachment points. To increase the rigidity, the design of the attachment unit needs to be changed.

Publisher

IOP Publishing

Subject

General Medicine

Reference21 articles.

1. Experimental and numerical study on lateral stability of temporary structures;Liu;Archives of civil and mechanical engineering,2018

2. Stability study on structural systems assembled by system scaffolds;Peng;Journal of Constructional Steel Research,2017

3. Cyber-physical systems for temporary structure monitoring;Yuan;Automation in Construction,2016

4. Structural modelling of support scaffold systems;Chandrangsu;Journal of Constructional Steel Research,2011

5. Analysis of scaffolds with connections containing looseness;Prabhakaran;Computers and Structures,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3