Building energy simulation. Case studies with water flow glazing

Author:

Ama Fernando Del,Davis Hunter,Lauret Benito,Moreno Belen,Hernandez Juan A.

Abstract

Abstract Buildings represent complex systems with high levels of inter-dependence on many external sources. Building envelope expertise is a part of the building process, from pre-design through post-occupancy. Large glazed surfaces increase the building’s luminosity. However, the glass is a poor thermal insulator, and allows a great part of the solar radiation passing through it. The use of a glazed façade has the disadvantage of introducing an excess of energy in the building by means of solar radiation during the summer months. New glass technologies solve the energy problems raised by the use of glass in buildings: double and triple glazing, surface treatments, solar control glazing, low-emissivity glazing, etc. One of these is the water flow glazing. Due to the spectral properties of water, it captures most of the infrared solar radiation, allowing the visible component to pass through. This provides the water flow glazing with the same luminosity than conventional glazing, only lessening the heat transfer towards the interior space. Furthermore, the water circulation allows us to use, store or dissipate the captured energy as deemed appropriate. The first goal of this paper is to study the integration of the water flow glazing to evaluate its behavior in different weather conditions. Active and passive strategies will be tested in real case studies to achieve the goal of a Zero Energy Building.

Publisher

IOP Publishing

Subject

General Medicine

Reference25 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3