Sloshing induced damping in vertically vibrating systems

Author:

De Courcy J J,Constantin L,Titurus B,Rendall T C S,Cooper J E

Abstract

Abstract All aircraft are subject to a range of loading throughout ground and flight operations, which ultimately define the sizing and weight of the aircraft structure. Active and passive loads alleviation technologies provide an approach to reduce dynamic loads arising from atmospheric gusts and turbulence, leading to more fuel-efficient aircraft designs. Within the H2020 SLOWD project, fuel sloshing is being considered as a method for alleviating loads in aircraft wings via an increase in effective damping. Recent work has considered the transient response of a vertically vibrating, single degree of freedom system coupled to a rectangular liquid-filled tank. This research revealed identifiable dissipation regions in the free vibration responses characterised by their own distinct equivalent damping ratio values. In this work, free surface displacement has been extracted from high-speed camera footage during the chosen sloshing regimes, which are representative of a decaying parametrically excited fluid. These results are compared against a fluid-structure coupled numerical model based upon smoothed particle hydrodynamics, previously shown to have good agreement with the experimental damping response. Further analysis of the free-surface response of the numerical solution notes a presence of an undesired travelling longitudinal wave. The analysis of this discrepancy between the model and experiment is then used to improve the numerical formulation, showing a requirement for modelling surface tension.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3