Improving Performance of LiFePO4 by addition of Carbon Nano Tube for Lithium Ion Battery

Author:

Honggowiranto W,Kartini E,Sudaryanto ,Rofika R N S,Hutamaningtyas E,Subhan A,Sudjatno A

Abstract

Abstract LiFePO4 (LFP) cathode material has been synthesized with hydrothermal method. The reaction was done by reacting a mixture of FeSO4.7H2O, H3PO4, LiOH and CNT. In order to improve performance of LFP, the carbon nano tube (CNT) was added with the variation of 5, 10 and 15 mmol, before hydrothermal process. The material was stirred using a magnetic stirrer for 30 minutes, and then autoclave was heated at 180°C for 6 hours then sintered at 700°C for 6 hours. The results were characterized by X-ray diffraction (XRD), and Scanning Electron Microscope (SEM), and Impedance Spectroscopy (EIS). The X-ray data shows that the crystal structure of synthesized LiFePO4 has a group of Pmn with a space (olivine structure) which is in agreement with the LFP standard material. The addition of CNT does not change the crystal structure. This shows in SEM images that the crystallite size of LiFePO4 particles does not have much effect on the composite. The battery cell performance was measured by Impedance Spectroscopy and charge/discharge Battery Analyzer BST-8. The EIS data, showed the decreasing of battery impedance total from LiFePO4 material without CNT to addition of 5, 10 and 15 mmol CNT namely 214; 128.1; 88.6 and 70.1 Ω, and the specific capacity 0.1C are 38.78; 51.53; 106.84; 92.79 mAh/g, respectively. It is shown that the maximum specific capacity was obtained for LFP composite with the addition of 10mmol CNT. It can be concluded that the addition of CNT increases the conductivity and specific capacity, thus improving performance of lithium ion battery.

Publisher

IOP Publishing

Subject

General Medicine

Reference17 articles.

1. Lithium batteries: Status, prospects and future;Scrosati;J. Power Sources,2010

2. Indonesian consortium of lithium ion battery for solar street lamp;Kartini;IOP Conf. Series: Materials Science and Engineering,2018

3. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries;Padhi;J. Electrochem. Soc.,1997

4. Electronic Structure and Electrical Conductivity of Undoped LiFePO4;Xu;Electrochem. Solid-State Lett.,2004

5. Optimization of LiFePO4 synthesis by hydrothermal method;Muhsin Mazman;Turkish J. Chem.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3