A fully superconducting air-core machine for aircraft propulsion

Author:

Balachandran T,Lee D,Salk N,Haran K S

Abstract

Abstract Partial and fully superconducting (SC) machines promise high power density capabilities required for electric propulsion. These machines need to achieve high power densities while reducing electrical heat losses to minimize the required cryogenic power and subsequent additional weight. Hydrogen powered all-electric planes provide a design space where ac losses are manageable. However, the high electrical frequencies in high-speed fully superconducting machines pose a significant challenge to reducing armature ac losses. In high-speed applications, coupling loss in the SC armature coils dominates and becomes a barrier for practical application of these machines. In this paper a fully superconducting machine is proposed for a hydrogen powered regional all-electric plane. An air core design is considered utilizing low ac loss MgB2 wires. The design is targeted to achieve 50 kW/kg specific power while requiring ac losses to be less than 3 kW. This study explores the possibility of replacing a passive iron shield with active shielding coils to contain the magnetic flux inside the machine while reducing weight and increasing power density. The study focuses on minimizing weight as well as ac losses in the armature coils. An optimization algorithm is used to determine the trade-offs between iron shield and active shield coil designs. Results show that optimal designs for electric propulsion eliminate the passive shield in favor of active shielding coils - increasing the power density of the machine while maintaining the outside flux density below standard safety limits.

Publisher

IOP Publishing

Subject

General Medicine

Reference13 articles.

1. Active shielded high-field air-core superconducting machines;Haran;IEEE Trans. Applied Superconductivity,2016

2. Design consideration for fully superconducting synchronous motors at future electric aircraft;Patel,2018

3. Design of superconducting AC propulsion motors for hybrid electric aerospace;Manolopoulous,2018

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3