Noble metal nanoparticles dispersed on nanocellulose: a green platform for catalytic organic transformations

Author:

Thach-Nguyen Roya,Dang-Bao Trung

Abstract

In recent years, plant-derived biomaterials, typically cellulose, acting as catalytic supports have a great impact on heterogeneous catalysis thanks to their biodegradability, non-toxicity, low-cost, availability and easy-implementation. As the most abundant biopolymer found in nature, cellulose consists of repeating cellobiose units which are built up from two anhydroglucose rings and linked by a β-1,4 glycosidic bond. The term of “nanocellulose” has been widely used to describe cellulose nano-objects, involving cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs) and bacterial cellulose (BC). Nanocellulose features high specific surface area and controllable surface chemistry, high crystalline structure, superior mechanical strength and thermal stability, resulting in its applications in food, cosmetics, pharmaceutical, biomedical and paper industries. Concerning to catalytic support application, the nanocellulose surface possesses the hydroxyl (in nature) or the sulfate ester groups (modified via acid hydrolysis), facilitating metal ions reduction towards the corresponding metal nanoparticles. In addition, the supramolecular structure of cellulose permits to disperse metal nanoparticles and prevent their agglomerations. In this context, nanocellulose is introduced as matrices for immobilizing noble metal nanoparticles and then applied to catalytic organic transformations.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3