Design and Implementation of Bridgeless AC/DC PFC Sepic Converter with Valley-Fill Circuit

Author:

Praba B Lakshmi,Seyezhai R

Abstract

The continuous requirement to improve power quality has motivated the proposal of several PFC circuit topologies. The conventional AC/DC SEPIC has increased conduction loss due to the presence of bridge rectifier. In order to reduce the conduction loss and to improve the efficiency this research work deals with a bridgeless SEPIC (single ended primary inductance converter) AC/DC PFC integrated valley-fill circuit (VFC). The number of components is reduced compared to the existing topologies. The bridgeless topology results in reduced conduction loss, reduced current stress and improved system performance compared with the traditional SEPIC and the existing topologies. The circuit configuration of the suggested topology has been simulated using MATLAB/SIMULINK. The functional parameters of the projected AC/DC integrated VFC is compared with the conventional SEPIC (Con-SEPIC), con-SEPIC integrated VFC and bridgeless SEPIC in terms of passive component count, output voltage ripple, input current ripple, supply power factor, Total Harmonic Distortion. From the simulation outcomes, it is concluded that the bridgeless topology provides high power factor, reduced ripple and reduced supply current harmonics. The results are validated.

Publisher

IOP Publishing

Subject

General Medicine

Reference17 articles.

1. Accelerated degradation test investigation for life-time performance analysis of LED luminaires;Padmasali;IEEE Trans. Compon., Packag., Manuf.Technol,2020

2. a lifetime performance analysis of LED luminaires under real-operation profiles;Padmasali;IEEE Trans. Electron Devices,2020

3. a generalized methodology for predicting the lifetime performance of LED luminaire;Padmasali;IEEE Trans. Electron Devices,2020

4. Single-Phase SEPIC-based Power Factor Correction for Electric Vehicles Charging;Hussein;11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE),2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized virtual impedance solar restoration droop emulated SEPIC controller under low irradiation;Engineering Research Express;2024-05-07

2. Power Loss Reduction Using SOS Algorithm in SEPIC LED Drive;2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC);2023-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3