Effects of pure and mixed stabilizers on opto-electrical properties and morphology of TiO2 nanoparticles synthesized by sol-gel method

Author:

Ayyaz M,Huda N U,Rasool F,Sami-ur-Rehman H,Mehmood A,Naz M Y,Shukrullah S,Ghaffar A

Abstract

Abstract Titanium dioxide (TiO2) is acknowledged as the most advanced nanomaterial. It has been used in certain application, such as semiconductor, photocatalyst, dye solar cells, paints, dyes, cosmetics, antifogging coatings, self-cleaning windows, etc. Although TiO2 nanoparticles occur naturally in mineral form, but the particles are also being synthesized through different well-known techniques. The past literature reveals that sol-gel methodology is considered as the most attractive and suitable technique for the preparation of such kind of nanoparticles. This article reports the effects of three different stabilizers (HCl, HNO3 and mixture of HCl+HNO3) on the morphological and opto-electrical properties of TiO2 nanoparticles. The nanoparticles of TiO2 were synthesized through sol-gel process by using titanium tetra isopropoxide (TTIP) as precursor in a solution of deionized water and isopropanol at 80 °C under constant stirring. The synthesized TiO2 nanoparticles were characterized through X-ray Diffractometry (XRD), Scanning electron microscopy (SEM) and UV-Visible spectrophotometry. The grain size with perfect crystallinity obtained through XRD were in good agreement with SEM results. The grain size of the prepared TiO2 nanoparticles using HCl, HNO3 and (HCl+HNO3) were 3 nm, 2.8 nm and 3.3 nm, respectively. The optical characterization of TiO2 revealed band gap energy values of 4.10 eV, 6.16 eV and 6.14 eV corresponding to absorption edges at 302 nm, 201.2 nm and 201.73 nm, respectively. The smaller grain sizes were having larger band gaps.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3