Evaluation of scattering effects for radiation shielding or filter materials by using Monte Carlo simulation

Author:

Miza Osman Nur,Mohamad Tajudin Suffian,Hanim Aminordin Sabri Adila,Faddilah Mohd Noor Arif,Zahri Abdul Aziz Mohd

Abstract

Abstract Most radiology departments utilize ordinary concrete and lead for radiation shielding as the primary radiation can be reduced through photon absorption. There are many studies done focusing on the transmitted photons that penetrate the shielding materials for radiation shielding. However, the scattering from the shielding materials would be ignored. When high-energy photons impinge on thick shields, most of the incident energy is absorbed in the shielding materials, but some of it can also be deflected sideways or in a backward direction. This is important as the backscatter radiation can contribute to unnecessary additional radiation dose to healthcare workers. Hence, this study evaluates several shielding materials namely aluminium, iron, copper, lead, ordinary concrete, and heavy concrete particularly for its attenuated and scattered photons for radiation shielding. The shielding materials were evaluated using the Monte Carlo simulation, specifically PHITS code. In the simulation, all shielding materials were modelled as a fixed 30 x 30 cm rectangular shape with a fixed thickness of 10 cm. Mono-energy and pencil beam photon energies ranging from 100 keV until 1 MeV were directed to the shielding materials. As a result, at 100 keV, lead shielding showed the least amount of transmitted dose compared to other shielding materials. However, lead shielding also showed the highest reflected dose at the same incident photon energy. As copper showed the least amount of reflected dose at this incident energy, hence applying a thin layer of this material to lead shielding can tolerate the compromise between low transmitted dose and high reflected dose. Therefore, this can improve the radiation shielding at various irradiation facilities. In conclusion, the reflected dose for all materials studied will increase or higher when the incident photon energy increase, except for lead as well as for low-Z element materials rather than high-Z element materials.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. The use of lead as a shielding material;George;Nucl. Eng. and Design,1970

2. Efficiency of lead aprons in blocking radiation - how protective are they?;Seung-Jae;Heliyon,2016

3. Lead toxicity: A review;Wani;Interdisciplinary Toxicology,2015

4. Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics;Billen;Energy,2019

5. Toxicity of lead: A review with recent updates;Flora;Interdisciplinary Toxicology,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photon dose rate distribution inside and outside a brachytherapy room;Radiological Physics and Technology;2023-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3