Analysis of working fluids applicable for high-temperature loop heat pipe applications

Author:

Gakal P,Mishkinis D,Leilands A,Usakovs I,Orlov R,Rogoviy Y

Abstract

Abstract An objective of this study was to perform an analysis of available working fluids and select those one(s) that will be able to comply with the specific requirements of the ultra-high bypass ratio (UHBR) engine air bleed system and ensure efficient LHP operation. A multi-step approach was applied to analyse more than 700 working fluids and select four potential candidates, taking into account (1) working fluids compliance with EU regulations; (2) working fluids freezing, boiling, and critical points for the operating temperature range; (3) working fluids specific properties that influence the LHP performances. Selected fluids (toluene, acetone, methanol, 1,2-dichlorobenzene) were subjected to accelerated life tests to check their chemical compatibility with AISI 316 stainless steel to be used as the LHP material. Based on the results obtained, the toluene was selected as the working fluid for application in the innovative LHP-based thermal management solution for the UHBR engine air bleed system.

Publisher

IOP Publishing

Subject

General Medicine

Reference11 articles.

1. A review of loop heat pipes for aircraft anti-icing application;Qian;Applied Thermal Engineering,2018

2. Feasibility Study on Designing a Flat Loop Heat Pipe (LHP) to Recover the Heat from Exhaust of a Gas Turbine;Ghaffari;World Academy of Science, Engineering and Technology International Journal of Mechanical andMechatronic Engineering,2011

3. Effect of noncondensable gas on the startup of a loop heat pipe;He;Appl. Therm. Eng.,2016

4. Effects of non condensable gas in an ammonia loop heat pipe operating up to 125 °C;Prado-Montes;Appl. Therm. Eng.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3