Prediction of Fan Tone Radiation Scattered By A Cylindrical Fuselage

Author:

Rouvas D-M.,McAlpine A.

Abstract

Abstract A theoretical prediction method of the scattering of fan tone radiation from a turbofan inlet duct by the airframe fuselage is presented. The fan tone noise is modelled by an acoustic disc source that represents the sound field at the inlet duct termination. Adjacent to the source is a cylindrical fuselage that scatters the fan tone radiation. The prediction method is valid for upstream sound radiation. The acoustic pressure on the cylindrical fuselage is affected by refraction of the sound as it propagates through the fuselage boundary layer. This effect known as boundary layer shielding is more prominent forward of the turbofan, since the fan tone noise radiated from the inlet duct is propagating upstream. An asymptotic approach is used to model sound propagation through a boundary layer which is modelled by a thin linear shear velocity profile. Consequently the scattered pressure field can be computed very quickly, thus providing a fast and efficient prediction method. Although a realistic fuselage turbulent boundary layer does not resemble a linear shear layer, it is shown that the effect of acoustic shielding by a turbulent boundary layer can be modelled by taking a liner shear profile with a shape factor that matches the shape factor for a realistic turbulent profile.

Publisher

IOP Publishing

Subject

General Medicine

Reference12 articles.

1. Shielding of prop-fan noise by the fuselage boundary layer;Hanson;Journal of Sound and Vibration,1984

2. Propagation of propeller tone noise through a fuselage boundary layer;Hanson;Journal of Aircraft,1985

3. Free-field correction factor for spherical acoustic waves impinging on cylinders;Fuller;American Institute of Aeronautics and Astronautics Journal,1989

4. Near-field sound radiation of fan tones from an installed turbofan aero-engine;McAlpine;Journal of Acoustical Society of America,2015

5. A note on propagation through a realistic boundary layer;McAninch;Journal of Sound and Vibration,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3