Author:
Papadopoulos C,Vlachos S,Yakinthos K
Abstract
Abstract
In this work, the conceptual design methodology of a hybrid Unmanned Aerial Vehicle (UAV) – Unmanned Underwater Vehicle (UUV) platform is presented. As the mission complexity and the need for interoperability between different platforms grows more demanding by the day, hybrid platforms are becoming an essential solution. Hybrid UAV-UUVs can operate seamlessly and repeatedly in both the aerial and underwater environments, something that numerous animal species already execute in an optimized way. The design methodology starts with the review of the few available prototypes, creating initial design trends and continues with analytical calculations. These calculations are based on aircraft design textbooks and are modified to take into account the special characteristics of a hybrid platform, such as the means of transition between the water and the air. A Blended Wing Body (BWB) layout configuration is selected for the numerous aerodynamic advantages that it offers. The analytical calculations are then validated with the use of high fidelity CFD calculations. The results from the conceptual design phase indicate that the proposed methodology for hybrid UAV-UUV configurations provides a good design accuracy. Finally, the outcome of this methodology, which is a hybrid UAV-UUV platform is potentially the answer to the operational gap for missions that include both underwater and aerial environments.
Reference22 articles.
1. A survey on aerial submersible vehicles;Drews,2009
2. Review of marine animals and bioinspired robotic vehicles: classifications and characteristics;Zimmerman;Progress in Aerospace Sciences,2017
3. Fast aquatic escape with a jet thruster;Siddall;IEEE/ASME Transactions onMechatronics,2016
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献