Effect of temperature on the compressive strength and sustainability of expanded clay lightweight basalt fiber reinforced concrete

Author:

Chiadighikaobi P C,Alaraza H A A,Emiri D A,Eyo J E

Abstract

Abstract Concrete exposure to high temperature is a threat to the concrete which leads to loss of strength and degradation of the concrete. Based on this, it was necessary that the behavior on compression of lightweight expanded clay basalt fiber reinforced concrete (BFRC) be investigated when exposed to high temperature. The parameters and dosages of basalt fiber in lightweight expanded clay concrete have effects on the strength of the concrete. The sustainability of a structure in any environment is of high importance therefore, the types of material used as an aggregate and reinforcement must be durable, trustworthy and with the necessary properties suitable for the structure. The main aim of this paper is focused on the ability of lightweight expanded clay basalt fiber reinforced concrete when exposed to high temperature and tested for compressive strength, not to lose its total strength whereby, creating opportunity for the reuse of the concrete. The method of this research is based on laboratory test and practical review analysis. From the compressive strength, a view on the sustainability of this type of concrete is discussed. In this paper, the two sets of specimens were placed on three temperature ranges in a specific time interval. After, they were tested for compression. From the result, it was seen that expanded clay lightweight basalt fiber reinforced concrete didn’t lose much strength under compressive test after it was exposed to high temperature thereby making the concrete sustainable to high temperature.

Publisher

IOP Publishing

Subject

General Medicine

Reference10 articles.

1. Effect of high temperature on compressive strength of concrete prepared using different types of aggregates;Yazicioğlu,2018

2. Long-span bridges in Norway constructed in high-strength LWA concrete;Melby;Eng. Stru.,1996

3. A floating concrete platform hull made of lightweight aggregate concrete;Haug;Eng. Struc.,1996

4. Properties of high performance LWAC for precast structures with Brazilian lightweight aggregates;Rossignolo;Cem., Conc. Comp.,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3