Effect of Pyrolysis Temperature and Time on Properties of Palm Kernel Shell-Based Biochar

Author:

Mohd Hasan MH,Bachmann RT,Loh SK,Manroshan S,Ong SK

Abstract

Abstract Pyrolysis is a thermal decomposition of biomass occurring in the absence of oxygen. Biochar (solid), bio-oil (liquid) and biogas (gas) are the typical products from pyrolysis of biomass. This endothermic process produced biochar with high carbon content. During pyrolysis, the material is heated up from ambient to a peak temperature and remains for a defined residence time. Therefore, the pyrolysis peak temperature and the residence time are the key parameters for pyrolysis. Studies on the effect of these parameters on the biochar characteristics and the pyrolysis products composition are numerous. However, there are limited findings of these parameters with palm kernel shell (PKS) as the biomass. This study focusses on the effect of the pyrolysis temperature and residence time of PKS on the yield of biochar produced and the biochar physio-chemical properties. The results showed that biochar yield decreased as the peak temperature and residence time increased. This finding is consistent with the findings by other researchers. However, those factors do not have distinct influence on biochar’s carbon content as found in other study which the peak temperature has the bigger impact instead of residence time. The effect of peak temperature or residence time on grindability; i.e. particle size of biochar after wet ball milled is insignificant. Smaller size of biochar may improve its function as reinforcing filler. As a conclusion, the optimum setup of pyrolysis is needed for a balance production in yield and biochar’s properties. It is recommended to produce biochar at higher peak temperature and shorter residence time to increase the total production. Additional analysis e.g. physical testing on the final polymer product can be used to investigate the effect of pyrolysis peak temperature and residence time.

Publisher

IOP Publishing

Subject

General Medicine

Reference35 articles.

1. Polymer matrix-natural fiber composites: An overview;Yashas Gowda;Cogent Eng,2018

2. Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes;Dul;Nanomaterials,2018

3. Synergetic effects of carbon nanotube- graphene nanoplatelet hybrids in carbon fibre reinforced polymer composites;Silva;5th Int. Conf. Eng. Against Fail. (ICEAF-V 2018),2018

4. Effects of carbon nanotubes/graphene nanoplatelets hybrid systems on the structure and properties of polyetherimide-based foams;Abbasi;Polymers (Basel),2018

5. Highly Dispersible Buckled Nanospring Carbon Nanotubes for Polymer Nano Composites;Lee;Sci. Rep.,2018

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3