Author:
Mehner T,Junge T,Schubert A,Lampke T
Abstract
Abstract
The surface integrity of parts is strongly impacted by the surface-layer properties, which are modified by machining processes. In particular, it is advantageous if the finish machining process generates a resilient residual-stress state without additional post-treatment. Thus, this paper describes relationships between the forces and temperature which are measured in-situ/during the process and the residual-stress profile for the turning of the aluminum alloy EN AW-2017. The residual-stress depth profiles are measured by X-ray diffraction after electrochemical removal of material by means of jet-electrochemical machining. The characteristic features of the residual-stress profile (value and depth under the surface of the local minimum of the residual stress) are determined and modeled using multiple regression. The predictions of the models are validated by test samples. An excellent agreement between experiments and the model is achieved. Thus, the models can be applied to predict the expected residual-stress profiles during the machining process, which allows for an in-process adjustment of the machining parameters in order to generate an advantageous residual-stress state.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献