Author:
Keerthekesh Nadar S,Amrit T,Sanjay Srinivas S,Balaji K
Abstract
Abstract
The objective of the project is to determine the aerodynamic characteristics of baseballs and tennis balls using Computational Fluid Dynamics (CFD) methods. Most realistic initial and boundary conditions are used to simulate each type of ball and to identify key design aspects that can be applied and modified to enhance the performance of the ball and hence improve the game. The basic conservation equations in fluid dynamics are applied to the domain of study to plot the results. For the inlet, different values of velocity based on the motion of the ball in the game were given. A moderate value of surface roughness was given to model the effects of change in the surface between the two balls and the delay in boundary layer separation subsequently affecting the distance travelled by the ball was seen. By observing the values of lift and drag coefficients we can validate computational results with experimental results obtained from reference journals, thus proving that computational simulation has a place in predicting the trajectory and behaviour of moving balls in real-time.
The integration of spin in the simulation also yielded results that showcased the Magnus effect, this visualization is generally not observable on experimental methods since it involves complex processes to simulate spin, hence the trajectory of balls under different shots and pitches has been observed. We further developed an idea that could also be used to determine the trajectory of a dual-axis spinning ball. This would help in building the performance of athletes in the game.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Simulation of Tennis Spinning Ball Flight Path Based on Fuzzy Reasoning Algorithm;Discrete Dynamics in Nature and Society;2022-08-11
2. An experimental investigation of the dynamics of a tennis ball;2022 Advances in Science and Engineering Technology International Conferences (ASET);2022-02-21