Laser welding of dissimilar materials - simulation driven optimization of process parameters

Author:

Serdeczny M S

Abstract

Abstract Laser welding can be used to join dissimilar materials to produce lightweight structures, and electric vehicle battery systems, which are important means of limiting the carbon emissions in the transport industry. Due to the differences in melting temperatures, thermal conductivities, and mutual solubility of dissimilar materials, it is still challenging to create defect-free joints with high mechanical strength, or low contact electrical resistance. In this work, we present a state-of-the-art numerical model of laser welding, developed within the Computational Fluids Dynamics (CFD) paradigm. The multi-physics model simulates melting, flow, and solidification of the alloys and accounts for the laser-material interactions, phase change, temperature and alloy-dependent thermophysical properties, recoil pressure, buoyancy force, and Marangoni effect. The simulation predicts weld penetration depth and width, alloy mixing, as well as the temperature gradient and cooling rate during the solidification that can be further fed into a micro-structure prediction model. The model is coupled with an optimization tool, which iterates over different process parameters to optimize the joint. The methodology is presented for steel to aluminium welding in lap configuration, but it can be used for other materials such as steel-copper, aluminium-copper, or steel-nickel, and in arbitrary geometrical configuration.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3