On the occurrence of buoyancy-induced oscillatory growth instability in directional solidification of alloys

Author:

Barbera Josep Maria,Isensee Thomas,Tourret Damien

Abstract

Abstract Recent solidification experiments identified an oscillatory growth instability during directional solidification of Ni-based superalloy CMSX4 under a given range of cooling rates. From a modeling perspective, the quantitative simulation of dendritic growth under convective conditions remains challenging, due to the multiple length scales involved. Using the dendritic needle network (DNN) model, coupled with an efficient Navier-Stokes solver, we reproduced the buoyancy-induced growth oscillations observed in CMSX4 directional solidification. These previous results have shown that, for a given alloy and temperature gradient, oscillations occur in a narrow range of cooling rates (or pulling velocity, V p ) and that the selected primary dendrite arm spacing (Λ) plays a crucial role in the activation of the flow leading to oscillations. Here, we show that the oscillatory behavior may be generalized to other binary alloys within an appropriate range of (V p ,Λ) by reproducing it for an Al-4at.%Cu alloy. We perform a mapping of oscillatory states as a function of V p and Λ, and identify the regions of occurrence of different behaviors (e.g., sustained or damped oscillations) and their effect on the oscillation characteristics. Our results suggest a minimum of V p for the occurrence of oscillations and confirm the correlation between the oscillation type (namely: damped, sustained, or noisy) with the ratio of average fluid velocity V ¯ over V p . We describe the different observed growth regimes and highlight similarities and contrasts with our previous results for a CMSX4 alloy.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3